We study a syntax for specifying quantitative “assertions” — functions mapping program states to numbers — for probabilistic program verification. We prove that our syntax is expressive in the following sense: Given any probabilistic program C, if a function f is expressible in our syntax, then the function mapping each initial state σ to the expected value of f evaluated in the final states reached after termination C on σ (also called the weakest preexpectation wp[C](f)) is also expressible in our syntax.
As a consequence, we obtain a relatively complete verification system for verifying expected values and probabilities in the sense of Cook: Apart from a single reasoning step about the inequality of two functions given as syntactic expressions in our language, given f, g, and C, we can check whether g ≼ wp[C](f).